Novikov-symplectic Cohomology and Exact Lagrangian Embeddings

نویسنده

  • ALEXANDER F. RITTER
چکیده

We prove that if N is a closed simply connected manifold and j : L →֒ T ∗N is an exact Lagrangian embedding, then H2(N) → H2(L) is injective and the image of π2(L) → π2(N) has finite index. Viterbo proved that there is a transfer map on free loopspaces H∗(L0N) → H∗(L0L) which commutes under the inclusion of constant loops with the ordinary transfer map H∗(N) → H∗(L). This commutative diagram still holds if one introduces a Novikov bundle of local coefficients induced by the transgression τ(β) ∈ H(L0N) of a non-zero class β ∈ H2(N). By proving the vanishing of the Novikov homology H∗(L0N ; Λτ(β)) we obtain a contradiction to Viterbo functoriality if τ(jβ) ∈ H(L0L) vanished. This will yield the above obstructions to the existence of j.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformations of Symplectic Cohomology and Ade Singularities

Let X be the plumbing of copies of the cotangent bundle of a 2−sphere as prescribed by an ADE Dynkin diagram. We prove that the only exact Lagrangian submanifolds in X are spheres. Our approach involves studying X as an ALE hyperkähler manifold and observing that the symplectic cohomology of X will vanish if we deform the exact symplectic form to a generic non-exact one. We will construct the s...

متن کامل

Lagrangian Embeddings, Maslov Indexes and Integer Graded Symplectic Floer Cohomology

We define an integer graded symplectic Floer cohomology and a spectral sequence which are new invariants for monotone Lagrangian sub-manifolds and exact isotopies. Such an integer graded Floer cohomology is an integral lifting of the usual Floer-Oh cohomology with ZΣ(L) grading. As one of applications of the spectral sequence, we offer an affirmative answer to an Audin’s question for oriented, ...

متن کامل

The Z–graded symplectic Floer cohomology of monotone Lagrangian sub–manifolds

We define an integer graded symplectic Floer cohomology and a Fintushel–Stern type spectral sequence which are new invariants for monotone Lagrangian sub–manifolds and exact isotopes. The Z–graded symplectic Floer cohomology is an integral lifting of the usual ZΣ(L) –graded Floer–Oh cohomology. We prove the Künneth formula for the spectral sequence and an ring structure on it. The ring structur...

متن کامل

Rational Sft, Linearized Legendrian Contact Homology, and Lagrangian Floer Cohomology

We relate the version of rational Symplectic Field Theory for exact Lagrangian cobordisms introduced in [5] with linearized Legendrian contact homology. More precisely, if L ⊂ X is an exact Lagrangian submanifold of an exact symplectic manifold with convex end Λ ⊂ Y , where Y is a contact manifold and Λ is a Legendrian submanifold, and if L has empty concave end, then the linearized Legendrian ...

متن کامل

Fukaya A∞-structures associated to Lefschetz fibrations. III

Floer cohomology groups are usually defined over a field of formal functions (a Novikov field). Under certain assumptions, one can equip them with connections, which means operations of differentiation with respect to the Novikov variable. This allows one to write differential equations for Floer cohomology classes. Here, we apply that idea to symplectic cohomology groups associated to Lefschet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009